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The theory of brittle fracture originated more than forty years ago In the 
classical wcrka of Griffith [l and 23. Until comparatively recently this 
theory was looked upon as one more of academic rather than of practical inte- 
rest, since the number of materials which fail under normal conditions in a 
brittle manner is relatively small. Recently, however, considerable atten- 
tion has been devoted to phenomena associated with brittle failure and in 
particular fo the equlllbrlum and propagation of cracks. It has been dls- 
covered that at elevated or low temperature8 many structure8 of connnonly 
used material8 which display fully plastic properties in standard tensile 
tests fall by a auasl-brittle mechanism. The term auasi-brittle fracture 
means that the f&lure occur8 by mean8 of the propeatlon of cracks and that 
the plastic region, although It exists, la very narrow and Is concentrated 
in the lnnnedlate neighborhood of the surface crack. In the analysis of a 
quasi-brittle fracture it 18 possible to make use of the law8 governing a 
pweiy brittle fracture by replacing the surface tension by the total density 
of surface energy expended not only in overcoming lnt&molecular Lorces but 
also In the plastic deformation of the thin surface layer. Thle fact was 
first discovered by Irwin [3] and Orowan [4]. Over the last decade a con- 
siderable Aumber of papers have been produced on the lnveatigatlon of the 
statics and dynamics of elastic bodies with cracks. The results achieved 
so far in the study of the equilibrium and propagation of crack8 enable us 
to formulate the basic problem8 of the mathematical theory of brittle frac- 
ture in more general form. 

The analytical determination of the brittle etrength.of a given body under 
a given system of loading must be considered a8 a problem of the mathematical 
theory of brittle fracture. First of all we must define the quantitative 
characteristic of brittle strength. A precise definition of this character- 
istic is given later. At this stage It must be emphasized that, whatever 
this definition is, in assessing the brittle strength of the body we must 
take into account from the very beginning the existence of crack8 within the 
body and determine their effect on the body’s strength:’ brittle fracture 
takes place by means of the development of defect8 existing within the body. 
Therefore, the problem of the equilibrium of elastic bodies with cracks, I.e. 
the problem of the determining the elastic fields and crack configurations, 
is of extreme importance In the theory of brittle fracture. The character- 
istic of these problem8 lr that the surface shape of the cracks in the body 
under a given load is not specified but is determined, in general, by the 
complete loading process and by the initial cracks which already exist within 
the body before loading commences. This factor makes the problems of the 
Lheory of cracks essentially nonlinear and extremely difficult: at present 
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effective analytical solutions exist for very few problems. 

It should be pointed out that the solution. to a problem on the equilibrium 
of a body with cracks provides much more lnfdrmatlon than Is required In 
practice: after all, the elastic field and the dimensions of a crack inside 
the body are of only limited Interest. In fact it Is only Important to know 
If a body under a given loading has the necessary carrying capacity or not. 
In mathematical terms we can say that the actual solution to the problem of 
equilibrium of a body with cracks Is of no Interest; we only require to know 
whether or not such solution exists for'a given loading. Thus failure implies 
the onset of conditions which ensure the non-existence of a solution to the 
appropriate problem of the elastic equilibrium of a body with cracks. These 
conditions are of an essentially Integral nature and are not determined by 
the local structure of the state of stress anyv+here within the body. The 
approach adopted here to the brittle fracture agrees in general with the 
global conception of the failure of solid bodies [5). 

Some Investigators are Inclined to see a serious llmltatlon In this theory, 
In that It does not cover the formation of cracks and the resulting strength 
criteria depend on the dlmen8iOn8 of the Initial cracks within the body. 
However, this point of view 1s too simplified: It Is based on the Incorrect 
assumption that in all cases, as soon as a crack starts to develop It assumes 
catastrophic proportions and leads to the complete failure of the structure. 
In fact the development of cracks in a well designed and manufactured struc- 
ture Is at first stable C61, so that with Increase In load the size of the 
crack at first Increases continuously. Under these conditions the strength 
of the body within certain limits proves to be Independent of the Initial 
crack dimensions. The cracks which exist within or on the surface of the 
structure need not develcp catastrophically for the range of working loads 
specified; If the cracks are sufficiently small and If their stable develp- 
mknt 18 ensured over the loading range, then the brittle strength character- 
istic of the structure, determined for some more dangerous crack,conflgura- 
tlon selected on the basic of structural con8lderatlon8, 18 independent of 
the crack dimensions and can be accepted In the design a8 a predetermined 
quantity. The theory of brittle failure can be.lmproved by taking Into 
account the development bf cracks from micro-defects: such an improvement 
Is of Interest in principle. However, in the majority of caae8 in practice 
brittle failure occurs as a result of the development of small but never- 
theless macroscopic defect8 [6]. 

1. Crack8 of brittle fracture In solid bodies can be considered a8 sur- 

face8 of dlscontlnulty of the elastic displacement vector. In general, on 

8UCh a surface all three components of this vector 

suffer dlscontlnultles. Until recently very detailed 
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8tUdle8 had been made of cracks of normal dlscontlnu- 

lty on the surface of which only the component of the 

,' E displacement vector normal to the surface of dl8COn- 

u tlnulty suffers discontinuity, and also shear Crack8 

2 iri which discontinuity exist8 only In the tangential 

component of the displacement vector. 

Fig. 1 
Consider the neighborhood of an arbitrary point 

on the contour (*) of a crack In the body (Flg.1). We Introduce a natural 

local coordinate system with origin at the point 0 : the z-axis Is directed 

along the tangent to the contour of the crack, the y-axis along the normal 

to the surface of the crack at the point 0 and the x-axis into the body. 

*) By the contour of the crack we mean, as usual, the line bounding the 
surface of dl8contlnulty of displacements. 
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It can be shown that the stress distribution at points on the x-axis near 
the origin is in’general of the form 

u ulJ= 6 + O(l), a,, = f+ + O(l), % - + + O(1) 

xx, GY, 022 = O(1) (l-1) 
where a,, . ..a., are components of the stress tensor; N, T and S are the 
“coefficients of stress intensity” - quantities which depend on the applied 

loading, the shape of the boundary of the body and of the cracks existing in 

the body and on the position of the point 0 , but which are independent of 

x . It is shown in [7] that the stresses on the contour of the crack must 
be finite, so that 

N=T=S=O (4.2) 

In previous works (see the review [83), with few exceptions rect% inear 
ii zo cracks Of normal discontinuity have been .considered, for which QWz v Qtiz 

on the x-axis, or longitudinal shear cracks, for which 
:=d 

byu= 0 = bxx= 
ZL s 0 sverywhere within the body. The condition that N = 0 4s a funda- 

mental relation which defines the position of the edges of cracks was first 
Proposed in hypotetlcal form by Khristlanovich [g] and proved, on the basis 
of the principle of virtual displacements, in [lOJ. This condition signifies 
the finiteness of stresses and the smooth closure of opposite sides at the 
tl.ps of a crack of normal discontinuity. 

It is natural to divide the surface of the crack into two regions [ll] : 
an inner region where the opposite sides of the crack are far apart and where 
the cohesive forces are negligibly small, and an end region where the dis- 
tance between the opposite sides is small and cohesive forces are present. 
(In the case of quasi-brittle fracture the surface of the crack 1s taken as 
the boundary between the plastic region surrounding the crack and the outer 
elastic region; in this case the part of cohesive forces is played by for- 
ces applied by the plastic Up of the crack). By virtue of the linearity of 
the problem of the theory of elasticity for a specific shape of the body and 
its cracks, to which the determination of the quantities N, T and S 
reduces, these quantities can be put In the form 

N = No -b N,, T = To + T,, S = So + S, (1.3) 

where those with the suffix zero are calculated without taking into account 
forces of cohesion acting in the end region of the crack and those with the 
suffix D correspond to the action only of cohesive forces for the same 
crack configuration. 

lhe cohesive forces Increase with Increase In the load applied to the body 
and finally reach some maximum intensity, after which at this Point the crack 
starts to advance. In the study of cracks of normal discontinuity two funda- 
mental hypotheses were made (see the review C83): the hypothesis of the 
smallness of the end region a&the othesis of the nautonomy* (independence 
of loading under specified condftlons of the shape of the surface of the 
crack (and consequently, of the distribution of the cohesive forces) in the 
neighborhood of points at which the intensity of cohesive forces is a maximum. 
These hypotheses lead to the condition that everywhere on the Contour of a 
crack of normal discontinuity 

Nod Kin 

where K Is the cohesion modulus [ll and 83 - a constant of the material 
which j.s an integral &aracteristic of the cohesive forces for cracks of nor- 
waldlscontinuity and which characterizes resistance of the material to brit- 
tfe fracture. The state of points on the contour at which NO- K/n b liti- 
ting, 80 that any change in the load which would have led to an increase in 
g, in fact gives rise to movement of the crack at these Points on the con- 
tour, 
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In general the crack may be orientated In any way relative to the applied 

loads, sothatthere will berm uniqueness in the shape of the end region at the 
start of propagation of the crack. In order to determine the conditions for 

the lnltlatlon of the development of a crack we make the following hypothesis 

which Is a natural generalization of the hypothesis of the autonomy of the 

end region for a crack of normal discontinuity: for any body In which fall- 

ure occurs by a brittle or quasi-brlttle mechanism there exists a universal 

function of coefficients of intensities of cohesive forces 

W- No, - Ta, - So) (1.4) 
such '.hat 

@<O 0.5) 

at all points on the contours of all cracks within the body. The state of 

points on the contours of cracks at which 0 = O,ls llmltlng In the sense 

that the attainment of this state at some point on the contour makes the 

cracks move at this point and any change In the load which would have led to 

the rearrangement of the cohesive forces at that point, which would have made 

# > 0 In fact, by virtue of (1.5) leads to the advance of the crack at 

that point on the contour. Relations (1.2) and (1.3) enable us to write the 

llmltlng condition In the form 

Q, (N,,, Tc, &,) = 0 (W 

In particular, If the llmltlng condition corresponds to the constant 

energy of rupture, so that the density of energy v expended In forming a 

new surface crack Is constant Independently of the manner In which the llmlt- 

lng state Is reached at a given point on the contour, then relation (1.6) 

assumes the form 
9&z! [(I - v) (Nca + To') + &,*I = 7 

where v Is Poisson's ratio, E Is Young's modulus. But the density o'f 

surface energy y Is related to thz modulus of cohesion K by the relation 

[ll and 8J 

K*=?@/(l -v*) 

Therefore, from the preceding relation 

It foliows that 

(D-N,2 + T,2 +&%*-;K* (1.7) 

For cracks of normal discontinuity 
(PO= So= 0) relations (1.6) and (1.7) 

lead to the familiar condition [ll and 

Pig. 2 81 QzNO-K/n=0 W) 
Relation (1.6) defines the conditions for the commencement of crack 

development, but, In general, this relation Is Insufficient to establish the 

subsequent propagation of the crack. 

Suppose that a brittle body possessing a certain Initial crack system Is 

subjected to a system of loading e proportional to certain nondimensional 
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parameters A,, A,, . . . A, (Fig.2) (and also, perhaps, loaded by another sys- 

tem which remains unaltered during the whole loading process now to be con- 

sldered). The values of the parameters A, = Ap= . . . = A,= 0 correspond to 

the Initial state of the body. The simplest particular case Is when 

A,= Apa . . . = A,= A , the case of so-called proportional loading. Consider 

the space A,Ap...As. In this space the curve 

R, = h#), h, = h,(t), . . . ) h, = h,(t) (t 1s a parameter) (W 

which passes through the origin of coordinates A,= A,= . . . =O at t=O 

defines a certain loading path for the body. 

?he loading path Is called active If the quantity + for all points on 

the contours of all cracks In the body does not decrease over the whole load- 

ing path. 

The problem of the equilibrium of a body with cracks may be formulated as 

follows: for an Initial state of the body which Is specified at t = 0 and 

for an Initial system of cracks and a given loading path, to determine the 

elastic field and crack configuration corresponding to some value of t = tl>?. 

2. Consider the following example. Imagine (Flg.3) an Infinite plate 

with a crack under the action of a uniform stress Alp applied at Infinity 

In a direction perpendicular to the crack (A, Is a nondimensional loading 

parameter, P Is some constant. which has the dimensions of stress). The 

plate Is reinforced by two pairs of wire loops threaded through holes specl- 

ally drilled In the plate. If there Is no Initial stress In the loops then 

Fig. 3 

the effect of the loops reduces 

approxlmately to the action of four 

pairs of concentrated forces which 

Increase with Increase In the load- 

ing parameter A, , Here we have 

the simplest case of a crack of nor- 

mal discontinuity, for which 

In the present case of a symmetrical 

Isolated crack [ll and 81 we have 

(2.1) 

where 1 Is the half-length of the 

crack and g(x) is t.he distribution 

of normal stress at the position of 

the crack in a solid body under the 

action of the same loading, so that 

the limiting condition (1.8) assumes 

the form 
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(2.2) 

Expression (2.2) dlflnes In general the crack dimension 21 corresponding 

to each value of the parameter X, if the Initial length 2Zo in the unloaded 

plate (for X,= 0) Is known, i.e. It gives the solution for the present case 

to the basic problem of the theory of cracks. Indeed, it can be shown that 

for this case the curve of the function m(z) Is of the form shown schematl- 

tally In Flg.4. As A, Increases, the crack length remains constant and 

equal to 2zo until the value of the parameter h, = AL, is reached, when 

the limiting conditions at the tips of the crack are reached and relation 

(2.2) starts to be satisfied. With further Increase in the loading parameter 

A, the crack starts to extend: Its length is given by (2.2) and depends con- 

tinuously on the magnitude of the loading parameter (the crack develops in a 

stable manner) until the value of A, = hg Is reached. It can be seen that 

with Increase in the parameter h, from AL to hs, in spite of the growth 

of the crack, no failure of the body occurs: the plate as before remains 

able to withstand the Increasing load. 

Fig. 5 Fig. 6 

After the loading parameter reaches the value 4 = ha the position 

alters so-cewhat. !Che solution (In particular the size of the crack) no longer 

depends continuously on the loading parameter: the crack becomes unstable 

and Increases In a sudden jump. What Is important is that even this does 

not Indicate the failure of the body: with further Increase in A, the crack 

continues to grow In a stable manner and the plate remains able to withstand 

the Increasing load until the loading parameter reaches the value h, = hr. 

With any further Increase in the loading parameter, no matter how small, the 

solution to the problem of the equilibrium of the body with a crack no longer 

exists. Physically, this means that for all l> 1~ the 1lmltlng state at 

the tips of the cracks is already reached for values of the loading corres- 

ponding to smaller values of the loading parameter h,, so that for A,> hT 

the cohesive forces are no longer able to check the crack development and 

failure of the body occurs. Thus the nset of failure Is associated with 

the nonexistence of a solution to the problem of the equilibrium of a body 

with a crack. The llmltlng value of the loading parameter hr defines the 
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strength of a plate with a crack. 

For other values of the initial crack length the charactoristlc values of 

the loading parameter may coincide. For instance, if ld lies on the second 

un table segment (F&.5), then &, = As, I.e. the development of the crack 

becomes unstable immediately after the limiting state is reached at the tips 

of the crack, but failure of the body still does not occur. If I0 corres- 
ponds to the third unstable segment (Fig.6), then AL z As = AT, i.e. the 

development of the crack ~~ediately becomes unstable and complete failure 

of the body occurs. 

It is very important for the limiting value of the loading parameter hi 

(Fig.4), which is a characteristic of the strength of the body, to be the 

same for all values of the Initial crack size within the range &,< I,,< &., 

If 1s < & or Is> ly, then i~ediately after the Limiting state is reached 

at the tips of the crack a catastrophic crack growth occurs leading to total 

failure of the body. The corresponding value of the loading parameter aF 

for lo< 1, is greater than hi, and for is> 1~ it is less than ?q. There- 

fore for the structure under consideration we can formulate the following 

general conclusion. 

1. Xn the unloaded plate the crack length must be less than 2&. 

2. If condition 1 is satisfied, then the application of any load less 

than &~p will not cause failure. 

Thus for the present simple case the practical recommendations are as ~'ol- 

lows: plates with a crack length greater than 21~ Should be rejected ("1; 

as a strength limit the value of hop may be-taken; this value is indepen- 

dent of the crack length. For I, < 1, such a definition of strength limit 

is on the safe side. 

One often encounters assertion that the condition No= K/n always leads 
to the start of catastrophic crack development and failure of the body. 

The example just considered shows that the start of local failure, i.e. 
the development of cracks within the body, does not in general coincide with 
the start of unstable crack development, and the start of unstable catastro- 
phic growth of the cracks existing within the body does not in general coin- 
cide with total failure of the body. In other words the failure of a body is 
determined not by the local structure of the state of Stress at any point of 
the body, but by the essentially integral condition Of the nonexistence of a 
solution to the problem of the equilibrium of a body containing cracks. 

me acceptance of tne condition of local failure as a criterion Of failure 
Of the body can lead to a considerable underestimate of the body’s carrying 
capacity. me example also shows that the theory of brittle fracture makes 
it possible to derive a universal aharacteristic of the strength of a strut- 
ture which can be used in the calculations and which is independent of the 
size of the Initial crack. 

l ) This requirement is obvious: it means simply that the crack should not 
extend beyond the reinforcing loops, 



3. Let us return to the general case. For a given body with a given 
crack configuration and a given system of loading let us consider a surface 

of local failure 
FL&, A:,..., h,) = 0 (3.1) 

In the space X,1,... X, which has the following properties: for any loading 

represented by points inside this surface and reached by a loading path which 

also lies wholly within this surface, no development of a crack system takes 

place at any point on the contour and no crack growth takes place within the 

body. In ‘transferring to any point in the region outside the surface (3.1) 

one or other of these developments of a system of cracks takes place. In 

particular, if there are no stresses in the body for iI= X1=...= 0, then 

the origin of coordinates must be Inside the region bounded by the surface 

of iocal failure. In the example considered in Section 1 the equation of 

the surface of local failure Is of the form 

Al - ?uL= 0 (3.2) 

In general case the surface of local failure can be constructed as follows. 

For a given configuration of the crack system within the body the quantl- 

tie8 NO, T, and SO are linear functions of the parameters X,,A1,...,X,: 

No = f: bni + NW, Tc = i hiti + Too, 
I=1 

So = i h,s, + S,, (3.3) 
i=l i=l 

where nl, t, and 8, are the magnitudes of NO, To and S, corresponding to 

unit values of the parameter A, and zero values of the remaining parameters; 

Noo, TOO and SO, are the magnitudes of NO, To and SO corresponding to zero 

value8 of aii 8 parameters 1, . 

If we substitute expressions (3.3) Into the expression for the function 

@(N,, T,, S,), we obtain some function of the parameters h,, . . ., h, and of 

the coordinates of the points o-1 the contours at which the quantities n,, 

t, and 81 are evaluated. The vanishing of <D(N,,T,,S,) determines the 

onset of a llmlt1ng state ht the given point on the contour of a crack, so 

that the relation @ = 0 determines a one-parameter family of surfaces in 

the space h, I., . . . &.-The surface bounding the Intersection of the Inner 

regions of the whoi? family Is the surface of local failure. It defines the 

domain of loads for which no development of the crack system In the body 

takes place. 

On transfer to the region outside the surface of local failure, growth of 

crack system takes place at one point at least within the body. Let us first 

examine a more specific, but still sufficiently wide class of problems for 

which the dlrectlon of propagation of the cracks Is pre-determined (for exam- 

ple, problems in which the symmetry of the body and of the loading ensures 

the development of plane cracks, or problems of cracks In jointed bodies). 

In such problems for the case of an active loading path the elastic field 

and the configuration of the crack system within the body Is independent of 

the loading path and depends only on the final loading. Therefore, in addl- 
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tion to the surface of local failure it is expedient to Introduce a surface 

oflcea of stability and a auface of total failure defined as follows. The 
surface of loss of stability In the apace k,X,...X, Is defined by 

F&, I,, . . ., 5) = .o (3.4) 
This surface has the property that on travelling along any loading path lying 

ineide thirr surface the cracks develop in a stable manner, so that the 

conSlguratlon of the crack system varies continuously with travel along the 

loading path, When the loadlly path leaves the region Inside this surface 

at least one of the crack.8 becomes unstable. In the example considered in 

Section 2 the eQuatlon of the surface OS the loss of stability is 

The surface of 

parameters within 

body takes place. 

The surface of 

surface 

Al. - kf$ = 0 (3.5) 
1088 of stability defines the range of values of loading 

whfch no catastrophic growth of the cracks exfstlng In the 

total failure in the apace X,L,...X, is defined as the 

pT(&, &r l * .t b) = 0 (3.6) 
such that a solution exists to the problem of the equilibrium of a body poe- 
sesaing ora& for all point8 inside this surface approaching along any load- 
ing path which remain8 within the region contained ln8lde this surface and 

no solution exists for point8 outside this surface. 

&i the example of Section 2 the equation of the aurfsce of total failure 

ia h, - a* = 0 (3.7) 
The Surface of total failure irr the moat important charatterlstlc of the 

strength of a body for a given type of loading - it defines the safe range 

of values of the loading parameter0 for which failure of the body doe8 not 

occur. It is of practical intereet to determine the surface of total failure, 

stnce the start of craQk growth within the body or even the 1088 of Stability 

of the crack eystem, a8 has already been indicated, is invnaterial; what la 

essential la to eatablieh when the carrying capacity of the body will be 

exceeded, i.e. when the body will fall. 

Thue, for problem8 in which the direction of crack Propagation ia prede- 
termined, the determination of the basic strength characteristic - the tnar- 
face of total failure - reduces to the determlnatlon of the region of exlet- 
ence of a solution to the problem, formUlated preaisely in a raatheamtlcal 
sence, of the equilibrium of a body posaesslng cracke. 

The problem becomes very much more complicated in the general case of a 
curvilinear crack surface, when the direction of crack propagation is not 
predetermined and when the shape of the surface of the craake depends O&the 
complets loading path and not only on the position OS ita end point. 
this case a further hypothesis becomes essential which determines the direa- 
tion of propagation of the cracks; one such hypOthe8ie will be discu88ed 
below. It la not essential to know exactly what the hypothesis 28, and for 
our present purposes it la sufficient to assume that there exist8 Borne con- 
dition whlah detehnines the direction of propagation of a crack in an InSi- 
nltely small region on its contour for the configuration of crack systems 
and load- existing at any given moment. 
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Let us take some loading path A,= X,(t), AS- X,(t),...,L.= A,(t) and move 
along It from the origin of coordinates t = 0 , For sufflclently small 

values of t the configuration of the- crack system within the body does not 

alter, since at no point on the contours of the cracks Is the limiting state 

reached. Suppose that at t = t, the llmitlng state Is reached at one point 

at least. Consider a neighboring point on the active loading path under dls- 

cussion, corresponding to t = t,+ At . Due to the assumed condition the 

direction of crack propagation is known at all points where the limiting 

state Is reached. Therefore in general, for a sufficiently small At , we 

can find a shape of crack contour within the body so InfInItely close to the 

Initial shape that the llmltlng condition (1.6) will be satisfied at all new 

points on the crack contours. Now we apply a new Increment A,-& and repeat 

the preceding operation. It might happen at some stage (in particular, the 

first) that no matter how small the Increment At there does not exist a 

similar shape of the contours such that the limiting condition (1.6) Is 

satisfied at all new points on the crack contours. This Indicates either 

the loss of stability of one of the cracks (I.e. the nonexistence of an 

infinitely close solution), or failure (I.e. the nonexistence of a solution 

at all). In general it is not possible to distinguish these two forms of 

nonexistence of a solution v4thln the framework of the present purely stati- 

cal theory, since essentially the process of transition of a crack from one 

unstable state to another stable state Is a dynamic problem. If the dlrec- 

0’ 
tion of crack growth is predetermined, the actual 

0 * 

A+ 

dynamic process of crack development is not essen- 

tlal for the analysis, and we can confine our atten- 

tion to Information concerning the initial and final 

states which must satisfy the statical conditions. 

In the general case the shape of the surface of a 

crack at the end of a dynamic process of crack 

development is determined by the whole course of 

Fig. 7 the dynamic process. 

Thus, generally, it Is possible In principle only to specify the limiting 

value of the parameter t for a given loading path (if such a value exists) 

at which the solution to the problem of the equilibrium of an elastic body 

possessing cracks first ceases to depend continuously on the parameter t . 
Whether this llmlting value corresponds to total failure or only a catastro- 

phic unstable growth of one of the cracks without the body losing Its carry- 

ing capacity, Is not possible in general to establish. 

An analysis of experimental data enables us to formulate a condition which 
determines the direction of propagation of curvilinear cracks. 

If the problem of the equlllbrlum of a body containing cracks is plane, 
so that the surface of a crack is cylindrical, then as a basic hypothesis 
determining the direction of propagation of the prack we can take the hypo- 
thesis of local symmetry [12] of the state of stress in the neighborhood of 
the new tlp of the crack. 
tlon . 

This hypothesis comprises the following assump- 
Suppotie there exists a curvilinear crack (Pig.7) at the tip 0 of 

which the limiting state has been reached. Then the angle 9 at which the 
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crack will spread with an Infinitely small increase in load is determined by 
the condition of symmetry of the state of stress In a small region near the 
new tip 0’ of the crack about the line 00’. In particular, this implies the 
absence of transverse shear in this region, I.e. the vanishing cf shear 
stresses in the x&-plane close to the point 0’ on the line of propagation 
of the crack. In particular,, on the basis of this condition, in the absence 
also of longitudinal shear, the crack propagates in the direction of the 
maximum tensl.le stress, and in the absence of normal discontinuity (a longi- 
tudinal shear crack) the crack propagates In the direction of the maximum 
shear stress. The local symmetry hypothesis has been used in the solution 
of specific problems in [ 13 and 143. The position of the point 0’ is deter- 
mined by applying the limiting condition (1.6) at this point, which, by vlr- 
tue of the fact that the coefficient of Intensity of transverse shear stres- 
ses T, at the point 0’ is zero, may be written in the form 

aJ (No’, 0, So’)=0 (3.8) 

where N,’ and S,’ are the values of the coefficients of stress intensity 
at the point 0’. If in particular there is no longitudinal shear, condition 
(3.8) assumes the usual form 

NO’= K/n (3.9) 

Conversely, in the absence of normal discontinuity, this condition becomes 

So’ = L/n (3.10) 

where L is an appropriate constant of the cohesion modulus type for cracks 
of longitudinal shear. If we start from the condition of constant density 
of surface energy, then, by virtue of (1.7) 

L = K v/i--v (3.11) 

As an Illustrative example let us construct the surfaces of local failure, 

loss of stability and total failure for an infinite plate containing one 

Isolated crack in tension under a uniform stress 

1AE AIP applied at infinity In a direction perpen- 

dicular to the line of the crack and wit)1 con- 

centrated forces x,p applied at opposite 

points on the surface of the crack at Its cen- 

ter. The lerigth of the crack in the unloaded 

--__,C’ R, plate is 21e. - 

6 A simple analysis based on the method used 

by N.I. Muskhellshvill gives 
Fig. 8 

X, = * + Vz:;pV1 (3.12) 

On the basis of condition (1.8) the surface (in the Present case, of 

course, a line) of local failure (the line AA’ in Fig.8) is given by 

(3.13) 

After the limiting state Is reached at the tips of the crack the half- 

length t is given by 

(3.14) 



Dlfferentiatlng Expression (3.1%) with respect to X, 8nd X,, we obtain 

_& (Alp _ $.) + 2pz = 0, & (bP - $) -+- ?; = O (3.15) 

so that when 

?b,p- s-<o (3.16) 

the derivatives a&&x, and 3lfaXa are simult~eous~y positive. Since 

t 3 tC always, it fdllows that at all points on the line of 1OC81 failure 

lying below the point 0 , its point of intersection with the straight line 

h,p - J$- = 0 (3.17) 

(the line 88' in ~ig.8)~ the crack, having reached a movie-equ~llbri~ 

state, immediately becomes unstable. *The coordinates of this intersection 

point 0 are 
x1 = 

K 

pn1/210 ’ 
k_Xl/G 

a-Pi/Z (3.15) 

It can readily be seen that the lint? 

x,p+ =o 

where t Is given by Equation (3.14), is a hyperbola 

h,h, = Ka / 2npP 

(3.19) 

(3.20) 

passing through the point 0 (the line CC in ~1g.8), so that the line of 
loss of stability below the point 0 coincides with the line of 1OC81 fail- 

ure (3.13). Above the point given by (3.18) this line coincides with the 

hyperbola (3.x)). Also, solving Equation (3.14) for Jt , we find that 

fl=-p{g*(g[g-q.qj’~) (3.21) 

80 that above the hyperbola (3.20) the solution (3.21) becomes complex and 

8 re8l solution ceases to exist. 1: follows that the line of total failure 
a8 far 8s the point 0 coincides with the hyperbola (3.20). On crossing the 

line of loss of st8blllty, which below the point 0 coincides with the line 

of local failure (3.13), the derivatives al/ah, and al/ax, *become negative 
8nd it follows, therefore, that values of A, and X, lying between the line 

of local failure (3.13) and the hyperbola (3.20) correspond to values of 

&<lo * which Is impossible. This means that in this C8Se the line of tccal 

failure coincides everywhere with the line of loss of stablllty. 

Note that the hyperbola (3.20) Is the envelope of the llnea of local fall- 

ure (3.13) for various values of the parameter lo , the Initial half-length 
of the crack, Therefore, if the loading path Is such that the cr8Ck, on 
reaching 8 moving-equilibrium state, develops in a stable manner, then the 

line of tot81 failure which in this case coincides with the hyperbola (3.20) 
is Independent of the initial crack length 8nd In this respect is universal. 

4, We shall now consider the problem of similarity in brittle and quasl- 
brittle fracture. This aspect of the subject Is of considerable importance 
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since, as a result of the very real mathematical dlfflculties inherent in 
problems of brittle fracture it is not possible to count on being able to 
construct all the possible surfaces of failure by analytical methods for 
rather complex structures, It seems that in the majority of cases these and 
other characteristics of brittle strength must be determined from experiments 
with modela. For this purpose a model of the structure in question Is pre- 
pared, cracks are made in the model and the model Is loaded along various 
loading paths. By observing the behavior of the cracks we can establish one 
point on the surface of local failure by recording the load at the instant 
when one crack start8 to move. If one of the cracks first starts to develop 
in an unstable manner, the point obtained lies on the surface of loss of sta- 
bility, By tak5ng the model to failure by varfous loading paths we can 
obtain a number of polnte on the surface of total failure. In practice we 
would confine our Investigations to the more dangerous loading paths likely 
to be encountered by the structure. 

The nondimensional loading parameters A, always occur in a product with 
dimensional mlt5pl5ers whfch characterize the loading applied to the body. 
It usually happens that these quantities have the dimensions of stress, force 
per unit length (tension) or simply force. In order to be specific, suppose 
that X, 5s multiplled by p which has the dimensions of stress cp] =FLea, 
A, by R which has the dimensions of force per unit length [R] - m-l and 
As by p which has the dlmenslons of force [p] =F . Then the equation of 
any of the surfaces of failure may be written In the form 

where X is 
of the body. 

Note that 
arguments oi 
g-theorem In 
form 

F &J, w, h,P, - - .I K, 4 = 0 (4.Q 
the modulus of cohesion and d is a characteristic dimension 

a art from K and d there may be other quaM.lties in the 
6.1); K are essential. Ity virtue of the 
dimens50nal%&sh~~~f~elat50n (4.1) may be written in the 

e (nl, n*, IIS, L L * ,~i,"jl nk.. ,)=O (4.2) 

where A,, X, and L, , respectively, are other parameters which are multi- 
plied by quantities having the dimensions. of stress, force per unit length 
and force (it is always possible to arranne for these dimensional multls&fers 

a b 

te Xe equal respectively to pi R- and 
PI. We shall now consider two bodies,= 
h&term5ne their brittle strength and 
Indicate the conditions of 8lmihritY. 
We shall refer to one of the bodies as 
the actual structure and the other as 
the model; corresonding quantities 
will be denoted by the suffices n 
and m . Firstly, the condition of 
geometrical sim5larity of shape of 
both bodies and of the initial cracks 
must be satisfied. In addition, the 
nondimensional p6rameters of eimilarlty 
for the model and the actual structure 
must be equal, 5.e. (I&,= (I&),,. 

This relation enables us to translate the values of the strength charac- 
teristics for the model determined under conditions of brittle 8nd quasi- 
brittle fracture to the corresponding quantities for the actual structxn=e. 

Thus the correct procedure for analyzing & structure for brittle failure 
5s as follows. On the basis of an analysis of the geometrical shape of the 
structure and the conditions of Its manufacture a representation of the 
structure 5s decided upon, which repreoduces the defects typical of Its m@W- 
facturing process. It must be emphasized that the shape of the structure as 
shown 5n P5g.98 should be considered with reproduction of surface cracks 1, 
reaultlng Snom machining, as well as inter-1 cracks 2, resultlngR?aPweldlng 
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and the actual casting process etc. (Flg.9b). Then, theoretically or by 
model testing, the surfaces of failure for the chosen representation, or at 
least one or more essential points on this surface, are determlned. Then, 
If the maxlmum load to be applied to the structure Is given, restrictions 
are placed on the sizes of defects so that the given loading lies Inside the 
surface of total failure or, If a larger safety margin Is required, Inside 
the surface of loss of stability. Conversely, If a particular structure and 
Its manufacturing process are specified, the maximum load which ensures no 
failure of the structure, or even crack stability, Is determined. 

The preceding discussion appears to explain fully the state of affairs of 
the purely statical aspect of the mathematical theory of brittle fracture. 
Problems In the statical theory may be formulated ln a precise manner mathe- 
matically or easily reproduced experimentally. It would seem that one lmpor- 
tant problem of the mathematical theory of brittle fracture should be to 
develop methods for flndlng upper or lower bounds for the brittle strength 
characteristics. The problem becomes much more complex when the kinetics of 
fracture and crack propagation are considered. The point la that In many 
problems on the kinetics of fracture, apart from Increased compllcatlons In 
the mathematical aspects of the problem, the plastic region surrounding the 
CFack becomes significant. In spite of the fact that this region Is narrow, 
the process which takes place whlthln It can no longer be simply represented 
by means of finite relations deflnlng the limiting conditions, as was the 
case In the static theory. The behavior of the olastlc laver surroundinn 
the crack Is described 1; Its turn by dlfferentl‘al equatlo& which must con- 
form with the differential equations of elastic deformation outside the plas- 
tic zone. The difficulty of these problems la a consequence of the lncom- 
plete development In the theory of plasticity under conditions of complex 
states of etress_(and particularly the state of stress which exists near the 
tip of the crack), The ?larowness~of the plastic region provides some hope 
of the posslblllty of being able to make use of boundary layer methods. 

It Is important to assess the effect of.vlscoalty and temporary effects 
ln general both in the mass of the material and In particular In the surface 
zones of cracks. In the lnvestlgatlon of this effect the eolutlon to the 
problem depends very much on the so-called sustained strength. The dlfflcul- 
ties encountered here are completely analogous to those which arise in the 
study of kinetic fracture; 
been started by Kachanov [ 16 

very promlslng studies of this problem have 
and 173. 

In conclusion the author wishes to record his special gratitude to S.S. 

Qrlgorlan whose valuable advice made no amall contribution to the solution 

of the problems studied In this paper. The author expresses his thanks also 

to B.M. Malyshev, R.L. Salganlk and V.A. Qorodtsov for their helpful dlscus- 

slone . 
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