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The theory of brittle fracture originated more than forty years ago in the
classical works of Griffith [1 and 2]. Until comparatively recently this
theory was looked upon as one more of academic rather than of practical inte-
rest, since the number of materials which fall under normal conditions in a
brittle manner is relatively small. Recently, however, considerable atten-
tion has been devoted to phenomena assoclated with brittle failure and in
particular %o the equilibrium and propagation of cracks., It has been dis-
covered that at elevated or low temperatures many structures of commonly
used materials which display fully plastic properties in standard tensile
tests fail by a quasi-brittle mechanism. The term quasi-brittle fracture
means that the failure occurs by means of the propagation of cracks and that
the plastic region, although it exists, 1s very narrow and 1s concentrated
in the immediate neighborhood of the surféce crack. In the analysis of a
quasl-brittle fracture 1t is possible to make use of the laws governing a
pure.y brittle fracture by replacing the surface tension by the total density
of surface energy expended not only in overcoming intérmolecular “orces but
also in the plastic deformation of the thin surface layer. This fact was
first discovered by Irwin [3] and Orowan [4]., Over the last decade a con-
siderable Aumber of papers have been produced on the investigation of the
statics and dynamics of elastic bodies with cracks. The results achieved

so far in the study of the equilibrium and propagation of cracks enable us
to formulate the basic problems of the mathematical theory of brittle frac-
ture in more general form.

The analytical determination of the brittle strength of a given body under
a given system of loading must be considered as & problem of the mathematical
theory of brittle fracture, First of all we must define the quantitative
characteristic of brittle strength. A precise definition of this character-
istic is given later. At this stage it must be emphasized that, whatever
this definition is, in assessing the brittle strength of the body we must
take into account from the very beginning the existence of cracks within the
body and determine their effect on the body's strength: brittle fracture
takes plece by means of the development of defects exlisting within the body.
Therefore, the problem of the equilibrium of elastic bodies with cracks, 1.e.
the problem of the determining the elastic fields and crack configurations,
is of extreme importance in the theory of brittle fracture. The character-
istic of these problems i: that the surface shape of the cracks in the body
under a given load is not specified but is determined, in general, by the
complete loading process and by the initial cracks which already exist within
the body before loading commences. This factor makes the problems of the
theory of cracks essentially nonlinear and extremely difficult: at present
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effective analytical solutions exist for very few problems,

It should be pointed out that the solution to a problem on the equilibrium
of a body with cracks provides much more information than is required in
practice: after all, the elastic field and the dimensions of a crack inside
the body are of only limited interest. In fact it is only important to know
if a body under a given loading has the necessary carrylng capacity or not.
In mathematical terms we can say that the actual solution to the problem of
equilibrium of a body with cracks is of no interest; we only require to know
whether or not such solution exists for a given loading. Thus fallure implies
the onset of conditions which ensure the non-existence of a solution to the
appropriate problem of the elastic equilibrium of a body with cracks. These
conditions are of an essentilally integral nature and are not determined by
the local structure of the state of stress anywhere within the body. The
approach adopted here to the brittle fracture agrees 1ln general with the
global conceptlon of the failure of solid bodies [5].

Some lnvestlgators are inclined to see a serious limitation in this theory,
in that it does not cover the formation of cracks and the resulting strength
criteria depend on the dimensions of the initial cracks within the body.
However, this point of view 1is too simplified: it 1s based on the incorrect
assumptlion that 1n all cases, as soon as a crack starts to develop it assumes
catastrophic proportions and leads to the complete fallure of the structure.
In fact the development of cracks in a well designed and manufactured struc-
ture 1s at first stable [6], so that with increase in load the size of the
crack at first increases continuously. Under these conditions the strength
of the body within certain limits proves to be independent of the initlal
crack dimensions. The cracks which exist within or on the surface of the
structure need not develco catastrophically for the range of working loads
specified; Aif the cracks are sufficlently small and 1f their stable develp-~
ment 1is ensured over the loading range, then the brittle strength character~
istic of the structure, determined for some more dangerous crack:configura-
tion selected on the basic of structural considerations, 1s independent of
the crack dimenslons and can be accepted 1n the design as a predetermined
quantity. The theory of brittle fallure cen be improved by taking into
account the development of cracks from micro-defects: such an improvement
is of interest in principle., However, in the majority of cases in practice
brittle failure occurs as a result of the development of small but never-
theless macroscoplc defects [6].

l. Cracks of brittle fracture in solid bodies can be considered as sur-
faces of discontinuity of the elastlc displacement vector. In general, on
such a surface all three components of this vector
suffer discontinuitles. Until recently very detailed
studies had been made of cracks of normal discontinu-
ity on the surface of which only the component of the
displacement vector normal to the surface of discon-
tinuity suffers discontinuity, and also shear cracks
in which discontlnuity exlsts only in the tangential
component of the dlsplacement vector.

Fig. 1

Consider the neighborhood of an arbitrary point
on the contour (*) of a crack in the body (Fig.l). We introduce a natural
local coordinate system with origin at the point ¢ : the z-axls is directed
along the tangent to the contour of the crack, the y-axis along the normal
to the surface of the crack at the point (¢ and the x-axis into the body.

*) By the contour of the crack we mean, as usual, the line bounding the
surface of discontinulty of displacements,
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It can be shown that the stress distribution at points on the x~axis near
the origin is in‘'general of the form

Oy = Vi;-;— 0(1), 0y = -]7% +0(), o, = i; + 0(1)

xxy Oxzy Ozz = 0(1) (11)

where o,,...0,, are components of the stress tensor; ¥, T and § are the
"coefficients of stress intensity” — quantities which depend on the applied
loading, the shape of the boundary of the body and of the cracks existing in
the body and on the position of the point ¢ , but which are independent of
x . It is shown in [7] that the stresses on the contour of the crack must

be finite, so that
N=T=8=0 (1.2)

In previous works {see the review [8]), with few exceptions rectilinear
cracks of normal discontinuity have been considered, for which Oy =VU,5,=
on the x-axis, or longitudinal shear cracks, for which Oy = Oy = Opx =
==6,, == () everywhere within the body. The condition that ¥ = O s a funda-
mental relation which defines the position of the edges of cracks was first
proposed in hypotetical form by Knhristianovich [9] and proved, on the basis
of the principle of virtual displacements, in [10]. This condition signifies
the finiteness of stresses and the smooth closure cf opposite sides at the
tips of & crack of normal discontinuity.

It is natural to divide the surface of the crack into two regions [11] :
an inner region where the opposite sides of the crack are far apart and where
the cohesive forces are negligibly small, and an end reglon where the dis-
tance between the opposite sides 1s small and coheslive forces are present.
(In the case of quasi-brittle fracture the surface of the crack 1s taken as
the boundary between the plastic reglon surrounding the crack and the outer
elastic region; in this case the part of cohesive forces 1s played by for-
ces appllied by the plastic tip of the crack). By virtue of the linearity of
the problem of the theory of elasticity for a specific shape of the body and
its cracks, to which the determination of the quantitlies ¥, 7 and
reduces, these quantities can be put in the form

N=No+N,, T=To+T, S=5+S5, (1.3)

where those with the suffix zero are calculated without taking into account
forces of cohesion acting in the end reglon of the crack and those with the
suffix g correspond to the action only of cohesive forces for the same
crack configuration.

The cohesive forces increase with increase in the load applled to the body
and finally reach some maximum intensity, after which at this polnt the crack
starts to advance. In the study of cracks of normal discontinuity two funda-
mental hypotheses were made (see the review [8]): the hypothesis of the
smallness of the end region ard the hygothesis of the autonomy {independence
of loading under specified conditions) of the shape of the surface of the
crack {and consequently, of the distribution of the cohesive forces) in the
neighborhood of points at which the intensity of cohesive forces is a maximum.
These hypotheses lead to the condition that everywhere on the contour of a
crack of normal discontinuity

NoeK/n

where X 1s the cohesion modulus [11 and 8] — a constant of the material
which is an integral characteristic of the cohesive forces for cracks of nor-
mal discontinuity and which characterizes resistance of the material to brit-
tle fracture. The state of points on the contour at which N, = K/h is 1imi~
ting, so that any change in the load which would have led to an increase in
¥, in fact gives rise to movement of the crack at these points on the con-
tour.
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In general the crack may be orlentated in any way relative to the applied
loads, so that there wlll be no uniqueness in the shape ot the end region at the
start of propagation of the crack. In order to determine the conditions for
the initiatlion of the development of & crack we make the following hypothesis
which 1s a natural generalization of the hypothesis of the autonomy of the
end region for & crack of normal discontinuity: for any body in which fail-
ure occurs by a brittle or quasi-brittle mechanism there exists a universal
function of coefficients of intensitles of cohesive forces

®O(— N,y — Tay — So) (1.4)
d<O0 (1.5)

at all points on the contours of all cracks within the body. The state of
points on the contours of cracks at which @ = 0,1s limiting in the sense
that the attainment of this state at some polnt on the contour makes the
cracks move at this point and any change in the load which would have led to
the rearrangement of the coheslive forces at that point, which would have made
® > 0 1n fact, by virtue of (1.5) leads to the advance of the crack at
that point on the contour. Relations (1.2) and (1.3) enable us to write the
limiting condition in the form

) (Nov T, So) =0 (1-6)

In particular, if the limiting conditlion corresponds to the constant
energy of rupture, so that the denslty of energy y expended in forming a
new surface crack 1s constant inderendently of the manner in which the limit-
ing state is reached at a given point on the contour, then relation (1.6)
assumes the form

such “hat

x(1+w

LN (4 — ) (V2 + T) + S = 1

where v 1s Polsson's ratio, 7 1is Young's modulus, But the density of
surface energy y 1s related to th2 modulus of cohesion Kk by the relation

[11 and 8]
K*=aEy/(1 — %)

AP
’ Therefore, from the preceding relation
1t foliows that
1 1
) ®=N3+ T+ — S — 5 K (1.7)
/7 A -V v
Ay 7 For cracks of normal discontinuity

(T,= S,= O) relations (1.6) and (1.7)
lead to the familiar condition [11 and

8
Fig. 2 ] ®=N,—K/n=0 (L8
Relation (1.6) defines the conditions for the commencement of crack

development, but, in general, this relation 1s insufficient to establish the
subsequent propagation of the crack.

Suppose that a brittle body possessing a cértain initial crack system is
subjected to a system of loading & proportional to certain nondimensional
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parameters A;, Ay, ... A, (Fig.z) (and also, perhaps, loaded by another sys-
tem which remains unaltered during the whole loading process now to be con-
sidered). The values of the parameters \;= ipz= ... = i, = 0 correspond to
the initlal state of the body. The simplest particular case is when

Ay=Xg= ... =X, = A , the case of so-called proportional loading. Consider
the space A;A;...A,. In this space the curve

A =M, A= Ao(t), ... L A = Ag(t) (¢ 4is a parameter) (1.9)

which passes through the origin of coordinates i,=i,= ... =0 at ¢t =0
def'ines a certain loading path for the body.

The loading path is called active if the quantity ~ for all points on
the contours of all cracks in the body does not decrease over the whole load-
ing path.

The problem of the equilibrium of a body with cracks may be formulated as
follows: for an initial state of the body which is specifled at ¢ = O and
for an initial system of cracks and a given loading path, to determine the
elastic field and crack configuration corresponding to some value of ¢ =¢,>0,

2. Consider the following example. Imagine (Fig.3) an infinite plate
with a crack under the actlon of a uniform stress \,p applied at infinity
in a direction perpendicular to the crack (A, 1s a nondimensional loading
parameter, P 1is some constant which has the dimensions of stress), The
plate is reinforced by two pairs of wire loops threaded through holes specl-
ally drilled in the plate. If there is no initial stress in the loops then

the effect of the loops reduces
O B A O S O D O B 1ﬂqp approximately to the actlon of four
2l pairs of concentrated forces which
— increase with increase in the load-

e ing parameter \, . Hece we have

the simplest case of a crack of nor-

Ah” mal discontinuity, for which
RN o N Kl

Fig. 3 In the present case of a symmetrilcal
i isolated crack [11 and 8] we have
44
\ 1
21 1) d
A \ N0=%~S-€-‘—L§g (2.1)
ST 1T T I p Vi—¢t
\ ' \
\ v \ where 1 1s the half-length of the
A ez v \ crack and g(x) 1s the distribution
\
-~/ of normal stress at the position of
Vi 4 the crack in a solid body under the
o 4, & Z

action of the same loadlng, so that
the limiting condition (1.8) assumes
the form
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K¢ gup)dt 1™
o0 =7 (| 425 e
0

Expression (2.2) difines in general the crack dimension 2] corresponding
to each value of the parameter XA, if the initlial length 2], in the unloaded
plate (for A= 0) 1is known, 1i.e. 1t gives the solution for the present case
to the basic problem of the theory of cracks. Indeed, it can be shown that
for this case the curve of the function ¢(z) 1s of the form shown schematl-
cally in Fig.4. As X, increases, the crack length remains constant and
equal to 21, until the value of the parameter A; = Ap, is reached, when
the limiting conditions at the tips of the erack are reached and relation
(2.2) starts to be satisfied. With further increase in the loading parameter
X, the crack starts to extend: 4its length is given by (2.2) and depends con-
tinuously on the magnitude of the loading parameter (the crack develops in a
stable manner) until the value of A, = Ag 1s reached. It can be seen that
with increase in the parameter kl from AL to KS, in spite of the growth
of the crack, no failure of the body occurs: the plate as before remains
able to withstand the increasing load.

(1: \/1;
A \ ! \\ /f\
\ ~ \ \ “\ \
v \ \ AN
\ ! ‘\ \ AM{'A \ — l
A‘-A 4 - \ / \ ! \
s 7 7 \ “ / \ ! \
- N/ \ - \,/ \
o
¢ I'4
4 L, 4 ’ ETA
Fig. 5 Fig. 6

After the loading parameter reaches the value A, = Ag the position
alters somewhat. The solution (in particular the size of the crack) no longer
depends continuously on the loading parameter: the crack becomes unstable
and increases in a sudden Jump. What is lmportant is that even this does
not lndicate the failure of the body: with further increase in Al the crack
continues to grow in a stable manner and the plate remains able to withstand
the increasing load until the loading parameter reaches the value hl = KT.
With any further increase in the loading parameter, no matter how small, the
solution to the problem of the equilibrium of the body with a crack no longer
exists. Physically, this means that for all l:>-lT the limiting state at
the tips of the cracks is already reached for values of the loadling corres-
ponding to smaller values of the loading parameter Ay, so that for A, > Ap
the cohesive forces are no longer able to check the crack development and
fallure of the body occurs. Thus the nset of fallure is associated with
the nonexistence of a solution to the problem of the equilibrium of a body
with a crack. The limiting value of the loading parameter Aq defines the
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strength of a plate with a crack.

For other values of the initial crack length the characteristic values of
the loading parameter may coincide. For instance, if I, lies on the second
un table segment (Fig.5), then Ay == Ag, 1.e. the development of the crack
becomes unstable immedlately after the limiting state is reached at the tips
of the crack, but fallure of the body still does not occur. If 7, corres-
ponds to the third unstable segment (Fig.6), then A = As = Ap, 1.e. the
development of the crack immediately becomes unstable and complete fallure
of the body occurs,

It is very important for the limiting value of the loading parameter AT
(Fig.4), which 1s a characteristic of the strength of the body, to be the
same for all values of the initial crack size within the range l, < ly < .
It Iy < by or [y > Iy, then immediately after the limiting state is reached
at the tips of the crack a catastrophic crack growth cccurs leading to total
failure of the body. The corresponding value of tle loading parameter AF
for ly < ly is greater than Ar, and for l;>> Iy it is less than Ayp. There-
fore for the structure under conslderation we can formulate the following
general conclusion.

1. In the unloaded plate the crack length must be less than 2lp,

2, If condition 1 1s satisflied, then the application of any load less
than Arp will not cause fallure.

Thus for the present simple case the practical recommendations are as .'ol~
lows: plates with a crack length greater than 2l;y should be rejected (*};
as a strength limit the value of lTp may be taken; this value ls indepen-
dent of the crack length., For [, < I, such a definition of strength limit
is on the safe side,

One often encounters assertion that the condition ¥,= X/v always leads
to the start of catastrophic crack development and fallure of the body.

The example just considered shows that the start of local failure, 1.e.
the development of cracks within the body, does not in general coinclde with
the start of unstable crack development, and the start of unstable catastro-
phic growth of the cracks existing within the body does not in general coin-
clde with total failure of the body. In other words the failure of a body is
determined not by the local structure of the state of stress at any point of
the body, but by the essentially integral conditlion of the nonexlstence of a
solution to the problem of the equilibrium of a body contalning cracks.

The acceptance of tne condition of local fallure as & criterion of fallure
of the body can lead to a considerable underestimate of the body's carrylng
capacity. The example also shows that the theory of brittle fracture makes
it possible to derive a universal characteristic of the strength of & struc~
ture which can be used in the calculations and which is independent of the
size of the initial crack.

*) fThis requirement is obvious: 1t means simply that the crack should not
extend beyond the reinforeing loops.
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3. Let us return to the general case. For a given body with a given
crack configuration and a given system of loading let us consider a surface

of local failure Fr(hy Aeyooyh) =0 (3.1)

in the space A;X,...\, which has the following properties: for any loading
represented by points inside this surface and reached by a loading path which
also lles wholly within this surface, no development of a crack system takes
place at any polnt on the contour and no crack growth takes place within the
body. In transferring to any point in the region outside the surface (3.1)
one or other of these developments of a system of cracks takes place. In
particular, if there are no stresses in the body for i,;= lg=...= O, then

the origin of coordinates must be inside the region bounded by the surface

of local failure. 1In the cxample considered in Section 1 the equation of

the surface of local fallure is of the form

M —AL=0 (3.2)

In general case the surface of local fallure can be constructed as follows,

For a given configuration of the crack system within the body the quanti-
ties ¥,, T, and S, are linear functions of the parameters Xi;,hz,...,%\,:

Ny, = ;I-M"i + Ngoy, Typ= 12 Mty + Ty, So= iE Ais; + Soo (3~3)
= =1 . =1

where n,, t, and g, are the magnitudes of ¥,, 7, and §, corresponding to
unit values of the parameter )\, and zero values of the remaining parameters;
Noos Too 8nd S,, are the magnitudes of ¥,, I, and §, corresponding to zero
values of all g parameters 1,

If we substitute expressions (3.3) into the expression for the function
@D(Ny, Ty, Sp), we obtain some function of the parameters A,, ..., A, and of
the coordinates of the polnts oa the contours at which the quantities »n,,
t, and g, are evaluated. The vanishing of (N, T,, S;) determines the
onset of a limiting state at the given point on the contour of a crack, so
that the relation () — () determines a one-parameter family of surfaces in
the space A, Ay ... MAs. The surface bounding the intersection of the inner
regions of the wholz family 1s the surface of local failure. It defines the
domain of loads for which no development of the crack system in the body
takes place,

On transfer to the region outside the surface of local failure, growth of
crack system takes place at one point at least within the body. Let us first
examine a more specific, but still sufficlently wide class of problems for
which the directlion of propagation of the cracks 1s pre-determined (for exam-
ple, problems in which the symmetry of the body and of the loading ensures
the development of plane cracks, or problems of c¢racks in jointed bodies).
In such problems for the case of an active loading path the elastlic field
and the configuration of the crack system withln the body is independent of
the loading path and depends only on the final loading. Therefore, in addi-
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tion to the surface of local fallure it is expedient to introduce a surface
of loss of stability and a suface of total failure defined as follows., The
surface of loss of stability in the space i Ag...\, 18 defined by

Fa(hiy Agy oo oy hg) =0 (3.4)
This surface has the property that on travelling along any loading path lying
inside this surface the cracks develop in a stable manner, so that the
configuration of the crack system varies continuously with travel along the
loading path. When the loading path leaves the region inside this surface
at least one of the cracks becomes unstable. In the example considered in
Section 2 the equation of the surface of the loss of stability is

A —As=0 (3.5)
The surface of loss of stability defines the range of values of loading

parameters within which no catastrophic growth of the cracks existing in the
body takes place.

The surface of total fallure in the space i;1;...\, 1is defined as the

surface FrQhy Agy oy A) =0 (3.6)
such that a solution exists to the problem of the equilibrium of a body pos-
sessing cracks for all points inside this surface approaching along any load-
ing path which remains within the region contained inside this surface and
noe solution exists for points outaide this surface.

In the example of Section 2 the equation of the surface of total failure
is 7&1 - 3‘1' = { (37)

The surface of total fallure is the most important characteristic of the
strength of & body for & glven type of loading — it defines the safe range
of values of the loading parameters for which failure of the body does not
ocour., It is of practical interest to determine the surface of total fallure,
since the start of crack growth within the body or even the loss of stability
of the crack system, as has already been indicated, is immaterial; what is
essential is to establish when the carrying capacity of the body will be
exceeded, i.e. when the body will fail,

Thus, for problems in which the direction of crack propagation is prede-
termined, the determination of the basic strength characteristic ~ the sur-
face of total fallure — reduces to the determination of the reglon of exist-
ence of & solution to the problem, formulated precisely in & mathematical
sence, of the equilibrium of a body possessing cracks.

The problem becomes very much more complicated in the general case of a
curvilinear crack surface, when the direction of crack propagation is not
predetermined and when the shape of the surface of the cracks depends on the
complete loading path and not only on the position of its end point,
this case a further hypothesis becomes esaential which determines the direc-
tion of propagation of the cracks; one such hypothesis will be discussed
velow. It is not essential to know exactly what the hypothesis is, and for
our present purposes 1t 1s sufficlent to assume that there exists some con-
dition which determines the direction of propagation of a crack in an infi-
nitely small region on its contour for the configuration of crack systems
and loading existing at any given moment.
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Let us take some loading path X, = X, (¢}, Az= Az(¢),...,4, = A, (¢) and move
along it from the origin of coordinates ¢ = O , For sufficlently small
values of ¢ the configuration of the. crack system within the body does not
alter, since at no point on the contours of the cracks 1s the limiting state
reached. Suppose that at ¢ = ¢, the limiting state is reached at one point
at least, Consider a neighboring point on the active loading path under dis-
cussion, corresponding to ¢ = ¢t,+ At . Due to the assumed conditlon the
direction of crack propagation is known at all points where the limiting
state is reached. Therefore in general, for a sufficlently small Al , we
can find a shape of c¢rack contour within the body so infinitely close to the
initial shape that the limiting condition (1.6) will be satisfied at all new
points on the crack contours. Now we apply a new increment 4, ¢ and repeat
the preceding operation. It might happen at some stage (in particular, the
first) that no matter how small the increment A¢ there does not exist a
similar shape of the contours such that the limiting condition (1.6) 1is
satisfled at all new polnts on the crack contours. This indicates either
the loss of stability of one of the cracks (l.e. the nonexistence of an
infinitely close solution), or fallure (i.e. the nonexistence of a solution
at all). In general it is not possible to distinguish these two forms of
nonexistence of a solutlon within the framework of the present purely stati-
cal theory, since essentially the process of transition of a crack from one
unstable state to another stable state 1s a dynamic problem. If the direc-
tion of crack growth 1s predetermined, the actual
dynamic process of crack development is not essen-

0 (i tial for the analysis, and we can confine our atten-
tion to information concerning the initial and final
states which must satisfy the statical conditions.
In the general case the shape of the surface of a
crack at the end of a dynamic process of crack
development is determined by the whole course of

Fig., 7 the dynamic process.

0

Thus, generally, it 1s possible in principle only to specify the limiting
value of the parameter ¢ for a given loading path (if such a value exists)
at which the solution to the problem of the equilibrium of an elastic body
possessing cracks first ceases to depend continuously on the parameter ¢ .,
Whether this limiting value corresponds to total fallure or only a catastro-
phic unstable growth of one of the cracks without the body losing its carry-
ing capacity, 1s not possible in general to establish.

An analysis of experimental data enables us to formulate a condition which
determines the direction of propagation of curvilinear cracks.

If the problem of the equilibrium of a body containing cracks is plane,
8o that the surface of a crack 1s cylindrical, then as a basic hypothesis
determining the directlion of propagation of the grack we can take the hypo-
thesis of local symmetry [12] of the state of atress in the neighborhood of
the new tlip of the crack. This hypothesis comprises the following assump~-
tion. Suppose there exists a curvilinear crack (Fig.7) at the tip ¢ of
which the limiting state has been reached. Then the angle 9 at which the



788 G.1. Barenblatt

crack will spread with an infinitely small increase 1n load is determined by
the condition of symmetry of the state of stress in a small region near the
new tip ¢’ of the crack about the line ¢0’. In particular, this implies the
absence of transverse shear in this region, i.e. the vanlshing cf shear
stresses 1ln the xy-plane close to the polnt ¢’ on the line of propagation

of the crack. In particular, on the basls of this condition, in the absence
also of longltudinal shear, the crack propagates in the direction of the
maximum tensjle stress, and in the absence of normal discontinuity (a longi-
tudinal shear crack) the crack propagates in the direction of the maximum
shear stress. The local symmetry hypothesis has been used in the solution

of specific problems in (13 and 14]. The position of the point ¢’ is deter-
mined by applying the limiting condition (1.6) at thils point, which, by vir-
tue of the fact that the coefficient of intensity of transverse shear stres-
ses 7T, at the point ¢’ is zero, may be written in the form

o (NO’v 0, S¢")=0 (3.8)
where ¥,” and S, are the values of the coefflcients of stress intensity

at the point ¢’. If in particular there 1is no longitudinal shear, condition
(3.8) assumes the usual form

Ne=K|= (3.9)
Conversely, in the absence of normal Jiscontinuity, this condition becomes
So'=L/xn (3.10)

where I 1is an approprlate constant of the coheslion modulus type for cracks
of longitudinal shear. If we start from the condition of constant density
of surface energy, then, by virtue of (1.7)

L=KVi—v (3.11)

As an illustrative example let us construct the surfaces of local fallure,
loss of stability and total failure for an infinite plate containing one
isolated crack in tension under a uniform stress

A A\,p applied at infinity in a direction perpen-
¢ dicular to the line of the crack and with con-
g centrated forces i,P applled at opposite
ﬁ\\ points on the surface of the crack at 1ts cen-

ter. The length of the crack in the unloaded
IR~~~ l" A, plate is 21,.

8 ‘\\\\\\ﬂ' A simple analysls based on the method used
by N.I. Muskhellshvill gives
Pig. 8 -
’ v eV P (3.12)
Yo=Y V3ayl

On the basis of condition (1.8) the surface (in the present case, of
course, a line) of local fallure (the line 44’ in Fig.8) 1s given by

MpY Iy kP K (3.13)
V2 ViaVi ©
After the limiting state 1s reached at the tips of the crack the half-
length ! 1s given by

Mp V7 AP —
Vi + Viavi

(3.14)

Al
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Differentiating Expression (3.14) with respect to 1\, and X, we obtain

o (Mp—22) 4 2p1 = 0, Z-(Mp—2N)+E =0 (315

80 that when
Mp— 222 <0 (3.16)

the derivatives 231/3\, and 23l/a\; are simultaneously positive. Since

12 I, always, it follows that at all points on the line of local fallure

lying below the point ¢ , its point of intersection with the stralght line
Mmp—22E =0 (3.17)

{the 1ine 3B’ in Pig.8), the crack, having reached & moving-equilibrium

state, immediately becomes unstable, The coordinates of this intersection

point 0 are klm K_ ’ = KVﬁo (318)
V2 PY?2
It can readlly be seen that the line
Mp— 222 = (3.19)
where 1 4is given by Eguation (3.14), 13 a hyperbola
MM, = K?/ 2npP (3.20)

passing through the point ¢ (the 1ine ¢C¢’ in Fig.8), so that the line of
loss of stability below the point (¢ coincldes with the line of local fall-
ure {3.13}. Above the point given by {3.18) this line coincides with the
hyperbola (3.20). Also, solving Equation (3.1%) for /1 , we find that

Bl @E- ) e

so that adbove the hyperbola (3.20) the solution (3.21) becomes complex and

8 real solution ceases to exist, 1 follows that the line of total failure
as far as the point ¢ coincides with the hyperbola (3.20). On crossing the
line of loss of stabllity, which b2low the point 0 coincldes with the line
of local failure (3.13), the derivatives 2a7/3\, and a1/3\, become negative
and it follows, therefore, that values of i, and 1\, lying between the line
of local failure {3.13) and the hyperbola (3.20) correspond to values of

1 < 1, , which is impossible. This means that in thls case the line of tcral
failure coincides everywhere with the line of loss of stabllity.

Note that the hyperbola (3.20) is the envelope of the lines of local fail-
ure {3.13) for various values of the parameter ls s the initial half-length
of the crack. Therefore, if the loading path is such that the crack, on
reaching & moving-equlilibrium state, develops in a stable manner, then the
line of total failure which in this case coincides with the hyperbola (3.20)
18 independent of the initial crack length and in this respect is universal.

4, We shall now consicer the problem of similarity in brittle and quasi-
brittle fracture. This aspect of the subject is of considerable importance
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since, &8s a result of the very real mathematical difficulties inherent in
problems of brittle fracture it is not possible to count on being able to
construct all the possible surfaces of failure by analytical methods for
rather complex structures. It seems that in the majority of cases these and
other characteristics of brittle strength must be determined from experiments
with models. For this purpose a model of the structure in question 1s pre-
pared, cracks are made in the model and the model 1s loaded along varilous
loading paths. By observing the behavior of the cracks we can establish one
point on the surface of local fallure by recording the load at the instant
when one crack starts to move., If one of the cracks first starts to develop
in an unstable manner, the point obtalned lies on the surface of loss of sta~-
bility. By taking the model to failure by various loading paths we can
obtain a number of points on the surface of total failure. In practice we
would confine our lnvestigations to the more dangerous loading paths likely
to be encountered by the structure.

The nondimensional loading parameters X, always occur in a product with
dimensional multipliers which characterize the loading applied to the body.
It usually happens that these quantities have the dimensions of stress, force
per unit length (tension) or simply force. In order to be specific, suppose
that ), 1s multiplied by p which has the dimensions of stress [p] =5r™%,
Az by R which has the dimensions of force per unit length [R] = sr~! and
A\s by P which has the dimensions of force [P} =p . Then the equation of
any of the surfaces of fallure may be written in the form

Fp MR, AP, .., K, d) =0 (4.1)

where X 1s the modulus of cohesion and ¢4 1s a characteristic dimension
of the body.

Note that apart from ¥ and 4 there may be other quantities in the
argumente of {4.1); x¥ and 4 , however, are essential. By virtue of the
l-theorem in dimensional analysis [15], relation (4.1) may be written in the
form

8 (I, My, My, . .., T, I, I, .. )=0 (4.2)
Md'tp MR AsP M A My
o ———— Zmm — J D | P n:“}"v I, = —
Ih K » 2 Kdtj, v ﬁs Kdl/‘ £ xl i )\:8 k ;u;

where \,, A\, and 1, , respectively, are other parameters which are multi-
plied by quantities having the dimensilons. of stress, force per unit length
and force (it is always possible to arrange for these dimensional multipliers
to be equal respectively to p, ® and
b P). We shall now consider two bodies, -
determine their brittle strength and
indicate the conditions of similarity.
We shall refer to one of the bodles as
the actual structure and the other as
the model; corresonding quantitles
will be denoted by the suffices n
and m . PFirstly, the condition of
geometrical similarity of shape of
both bodies and of the initial cracks
must be satisfied. In addition, the
nondimensional parameters of similarity
Fig. 9 for the model and the actual structure
must be equal, i.e. (II,),,== (I1,),.

This relation enables us to translate the values of the strength charac-
teristics for the model determined under conditions of brittle and quasi-
brittle fracture to the corresponding quantities for the actual structure.

Thus the correct procedure for analyzing a structure for brittle failure
45 as follows. On the basis of an analysis of the geometrical shape of the
structure and the conditions of its manufacture a representation of the
structure 1s decided upon, which repreoduces the defects typlcal of its manu-
facturing process. It must be emphasized that the shape of the structure as
shown in Fig.9a should be considered with reproduction of surface cracks 1,
resulting fnom machining, as well as internal cracks 2, resulting from welding

a
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and the actual casting process etc. (Fig.9b). Then, theoretically or by
model testing, the surfaces of fallure for the chosen representation, or at
least one or more essential points on this surface, are determined. Then,
if the maximum load to be applied to the structure is given, restrictions
are placed on the sizes of defects so that the given loading lies inside the
surface of total failure or, if a larger safety margin is required, inside
the surface of loss of stabllity. Conversely, if a particular structure and
its manufacturing process are specified, the maximum load which ensures no
failure of the structure, or even crack stability, 1s determined.

The preceding discussion appears to explain fully the state of affairs of
the purely statical aspect of the mathematical theory of brittle fracture.
Problems in the statical theory may be formulated in a precise manner mathe-
matically or easily reproduced experimentally. It would seem that one impor-
tant problem of the mathematical theory of brittle fracture should be to
develop methods for finding upper or lower bounds for the brittle strength
characteristics. The problem becomes much more complex when the kinetics of
fracture and crack propagation are consldered. The point is that in many
problems on the kinetics of fracture, apart from increased complications in
the mathematical aspects of the problem, the plastic regilon surrounding the
crack becomes significant. In spite of the fact that this reglon is narrow,
the process which takes place whithin 1t can no longer be simply represented
by means of finite relations defining the limiting conditions, as was the
case 1n the static theory. The behavior of the plastic layer surrounding
the crack is described in its turn by differential equations which must con-
form with the differential equations of elastic deformatlion outside the plas-
tic zone. The difficulty of these problems 18 a consequence of the incom-
plete development in the theory of plasticity under conditions of complex
states of stress (and particularly the state of stress which exists near the
tip of the crack). The narowness of the plastic region provides some hope
of the possibility of being able to make use of boundary layer methods.

It is important to assess the effect of.viscosity and temporary effects
in general both in the mass of the material and in particular in the surface
zones of cracks. In the investigation of this effect the solution to the
problem depends very much on the so-called sustained strength. The difficul-
ties encountered here are completely analogous to those which arise in the
study of kinetic fracture; very promising studles of this problem have
been started by Kachanov [16 and 17].

In conclusion the author wishes to record his special gratitude to S.S.
Grigorlan whose valuable advice made no small contribution to the solutlon
of the problems studied in this paper. The author expresses hls thanks also
to B.M. Malyshev, R.L. Salganik and V.A. Gorodtsov for their helpful discus-
sions.

BIBLIOGRAPHY

1. Griffith, A.A., The phenomenon of rupture and flow in solids. Philos.
Trans .Roy.Soc., A221, pp.163—198, 1920.

2, Griffith, A.A., The theory of rupture. Proc.lst International Congr.
Appl.Mech,Delft, pp.55— 63, 1924,

3. Irwin, G.R., Fracture dynamics, in "Fracturing of Metals", pp.147-166,
ASM, Cleveland, 1948,

4. Orowan, E.O., Fundamentals of brittle behavior of metals in "Fatigue
Fracture of Metals", pp.139-167, Wiley, N.Y., 1950.

5. Rabotnov, Iu.N., Mekhanika tverdogo tela i puti ee razvitiia (The mechan-
ics of a 80l1d body and its paths of development). Izv.Akad,.Nauk SSSR,
OTN, Mekhanika i mashlnostroenle, B 2, 1962,



792

10.

11.

12.

13.

0.1, Barendlatt

Drozdovskii, B.A, and Friedman, Ia.B., Vliilanie treshchin na mekhaniche-
skle svolstva konstruktsionnykh stalel (The effect of cracks on the
mechanical properties of structural steels). Metallurilzdat, M., 1960.

Barenblatt, G.1. and Cherepanov, G.P., O konechnostl napriazhenii na
kraiu proizvol'noi treshchiny (On the finitness of stresses at the
[leading] edge of an arbitrary crack). pMM Vol.25, NS¢ 4, 1961,

Barenblatt, G.I., Matematicheskala teoriia ravnovesnykh treshchin, obra-
zulushchikhsla pri khrupkom razrusheniil (The matematical theory of
equilibrium cracks formed in brittle fracture). PMIF, M 4, 1961.

Zheltov, Iu,P. and Khristianovich, S.A., O mekhanizme gidravlicheskogo
razryva neftenosnogo plasta (On the mechanism of hydraulic fracture
of an oil-carrying stratum). Izv.Akad.Nauk SSSR, OTN, N2 5, 1955,

Barenblatt, G.I., Ob usloviiakh konechnosti v mekhanike sploshnykh ‘sred.
Staticheskie zadachi teoril uprugosti (On the conditions of finiteness
in the mechanics of continuous media, Static problems of the theory
of elasticity). pMy Vol.24, N 2, 1960.

Barenblatt, G.I., O ravnovesnykh treshchinakh, obrazuiushchikhsia pri
khrupkom razrushenii (On equilibrium cracks formed in brittle fracture).
PMy Vol.23, N8 3 to 5, 1959.

Barenblatt, G.X. and Cherepanov, G.P., O khrupkikh treshchinakh prodol'-
nogo sdgiga {On brittle cracks of longitudinul shear). 2y¥ Vol.25,
N¢ 6, 1961

Cherepanov, G.P., Odna zadacha o vdavlivanii indentora s obrazovarniem
treshchin (A problem of stamp ldentation with formation of cracks).
PN Vol.27, N1, 1963.

14, Panasiuk, V.V, and Berezhnitskii, L.T., O rasprostranenii krivolineinykh

15.

16.

17.

(dugoobraznykh} treshchin pri rastiazhenii plastin {On the propagation
of curvilinear (arc-shaped) cracks in the tension of plates}. Priklad-
nala mekhanika, N¢ 6, 1964,

Sedov, L.I., Metody podobiia i razmernosti v mekhanike {Methods of
Similarity and Dimensionality in Mechanics). 4th Edition, Gostekh-
izdat, M., 1957.

Kachanov, L.M., K kinetlke rosta treshchin {On the kinetics of crack
growth). PMN Vol,25, M 3, 1961,

Kachanov, L.M., K voprosu o kinetike'rosga treshchin (On the question
of the kinetics of crack growth). Sb,"Issledovanila po uprugosti 1
plastichnosti”, N 2, Izd.Leningr.un-ta, 1963.

Translated by J.K.L,



